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This paper is a companion piece to our previous work [J. Stat. Phys. 119, 1283 (2005)], which introduced
a generalized canonical ensemble obtained by multiplying the usual Boltzmann weight factor e of the
canonical ensemble with an exponential factor involving a continuous function g of the Hamiltonian H. We
provide here a simplified introduction to our previous work, focusing now on a number of physical rather than
mathematical aspects of the generalized canonical ensemble. The main result discussed is that, for suitable
choices of g, the generalized canonical ensemble reproduces, in the thermodynamic limit, all the microcanoni-
cal equilibrium properties of the many-body system represented by H even if this system has a nonconcave
microcanonical entropy function. This is something that in general the standard (g=0) canonical ensemble
cannot achieve. Thus a virtue of the generalized canonical ensemble is that it can often be made equivalent to
the microcanonical ensemble in cases in which the canonical ensemble cannot. The case of quadratic g

functions is discussed in detail; it leads to the so-called Gaussian ensemble.
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I. INTRODUCTION

The study of many-body systems having nonconcave en-
tropy functions has been an active topic of research for some
years now, with fields of study ranging from nuclear frag-
mentation processes [1-3] and phase transitions in general
[4-6], to statistical theories of stars formation [7-12] and
fluid turbulence [13,14]. The many different systems covered
by these studies share an interesting particularity: they all
have equilibrium properties or states that are seen in the
microcanonical ensemble but not in the canonical ensemble.
Such microcanonical nonequivalent states, as they are called,
directly arise as a result of the nonconcavity of the entropy
function, and can present themselves in different ways both
at the thermodynamic level (e.g., negative values of the heat
capacity [8,15]) and the level of general macrostates (e.g.,
canonically unallowed values of the magnetization [13,16]).

The fact that the canonical ensemble misses a part of the
microcanonical ensemble when the entropy function of that
latter ensemble is nonconcave can be understood superfi-
cially by noting two mathematical facts:

(i) The free-energy function, the basic thermodynamic
function of the canonical ensemble, is an always concave
function of the inverse temperature.

(ii) The Legendre(-Fenchel) transform, the mathematical
transform that normally connects the free energy and the
entropy, only yields concave functions.

Taken together, these facts tell us that a microcanonical
entropy function that is nonconcave cannot be expressed as
the Legendre(-Fenchel) transform of the canonical free-
energy function, for otherwise the entropy function would be
concave. One should accordingly expect in this case to ob-
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serve microcanonical equilibrium properties that have abso-
lutely no equivalent in the canonical ensemble, since the
energy and the temperature should then cease to be related in
a one-to-one fashion, as is the case when the entropy func-
tion is strictly concave. This is indeed what is predicted theo-
retically [13,17] and what is observed in many systems, in-
cluding self-gravitating systems [7-12], models of fluid
turbulence [13,14], atom clusters [18,19], as well as
long-range interacting spin models [16,20-25] and models of
plasmas [26].

What we present in this paper comes as an attempt to
specifically assess the nonequivalent properties of a system
that are seen at equilibrium in the microcanonical ensemble
but not in the canonical ensemble. Obviously, one way to
predict or calculate such properties is to proceed directly
from the microcanonical ensemble. However, given the no-
torious intractability of microcanonical calculations [40], it
seems sensible to consider the possibility of modifying or
generalizing the canonical ensemble in the hope that it can
be made equivalent with the microcanonical ensemble while
preserving its analytical and computational tractability as a
nonconstrained ensemble. Our aim here is to show how this
idea can be put to work in two steps: first, by presenting the
construction of a generalized canonical ensemble, and sec-
ond, by offering proofs of its equivalence with the microca-
nonical ensemble. Our generalized canonical ensemble, it
turns out, not only contains the canonical ensemble as a spe-
cial case, but also incorporates the so-called Gaussian en-
semble proposed some years ago by Hetherington [27]. The
proofs of equivalence that we present here for the general-
ized canonical ensemble also apply, therefore, to the Gauss-
ian ensemble.

Much of the content of the present paper has been ex-
posed in a previous paper of ours [28]. The reader will find
in that paper a complete and rigorous mathematical discus-
sion of the generalized canonical ensemble. The goal of the
present paper is to complement this discussion by presenting
a number of results in a less technical way than previously
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done, and by highlighting a number of physical implications
of the generalized canonical ensemble that were not dis-
cussed before.

The content of the paper is as follows. In the next section,
we review the theory of nonequivalent ensembles so as to set
the notations and the basic results that we seek to generalize
in this paper. This section is also meant to be a review of the
definitions of the microcanonical and canonical ensembles.
In Sec. III, we present our generalization of the canonical
ensemble and give proofs of its equivalence with the micro-
canonical ensemble at both the thermodynamic and mac-
rostate levels of statistical mechanics. Section 5 specializes
these considerations to the special case of the Gaussian en-
semble. We briefly comment, finally, on our ongoing work
on applications of the generalized canonical ensemble.

II. REVIEW OF NONEQUIVALENT ENSEMBLES

We consider, as is usual in statistical mechanics, an
n-body system with microstate w e (), and Hamiltonian
H(w); (), is the microstate space. Denoting the mean energy
of the system by h(w)=H(w)/n, we define the microcanoni-
cal entropy function of the system by the usual limit

s(u) = lim i In p,(u), (1)

n—o

where

pn(u) = dw= f (h(w) —u)dw (2)
{weQ,:h(w)=u} O

n

represents the density of microstates w of the system having
a mean energy h(w) equal to u. As is well known, s(u) is the
basic function for the microcanonical ensemble from which
one calculates the thermodynamic properties of the system
represented by H(w) as a function of its energy. The analo-
gous function for the canonical ensemble that is used to pre-
dict the thermodynamic behavior of the system as a function
of its temperature T=(kgB)~! is the free-energy function
¢©(B). The latter function is taken here to be defined by the
limit

1
®(B) = liglc - InZ,(B), (3)
where

e "P®) gy (4)
Q,

Z,(B) =

denotes, as usual, the partition function of the system at in-
verse temperature B=(kzT)™".

The entropy and free-energy functions are obviously two
different functions that refer to two different physical
situations—the first to a closed system having a fixed energy,
the second to an open system in contact with a heat bath
having a fixed inverse temperature. However, these two
functions are not independent. In fact, we only have to re-
write the integral defining the partition function Z,(8) as an
integral over the mean energy values
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Z,(B) = f pu()e™"Pdu (5)

rather than an integral over (),, and then approximate the
resulting integral using Laplace’s method, to see that

Z,(B) = exp[— n inf{Bu - s(u)}] (6)

with subexponential correction factors in n. This application
of Laplace’s approximation is quite standard in statistical
mechanics and leads us hitherto to the following important
equation:

¢(B) =inf{Bu — s(u)}, ()

which expresses ¢(B) as the Legendre-Fenchel (LF) trans-
form of s(u) [13,29]. In convex analysis, the LF transform is
often abbreviated by the notation ¢=s", and s” in this context
is called the dual of s [13,29,30]. It can be shown that the
basic relationship ¢=s" holds no matter what shape s(u) has,
be it concave or not [13]. Consequently, ¢(8) can always be
calculated from the microcanonical ensemble by first calcu-
lating s(u) and then taking the LF transform of this latter
function. That this procedure always yields the correct free-
energy function ¢(B) follows basically from the fact that
¢(B) is an always concave function of B [29].

It is the converse process, that is, the attempt of calculat-
ing s(u) from the point of view of the canonical ensemble by
calculating the LF transform of ¢(B) that is problematic.
Contrary to ¢(f), s(u) need not be an always concave func-
tion of u. This has as a consequence that the double LF
transform ¢ =(s")", which takes the explicit form

¢ (w)=s"(u)= iréf{/o’u - (B}, (8)

may not necessarily yield s(u), since the LF transform of a
concave function, here ¢(8), yields a concave function. At
this point, the key question that we then have to ask is, when
does s™"(u) equal s(u)?

The answer to this question is provided by the theory of
convex functions [13,30], and invokes a concept central to
this theory known as a supporting line. This is the subject of
the next theorem, which we state without a proof; see Ref.
[13] for details.

Theorem 1. We say that s admits a supporting line at u if
there exists B such that s(v) <s(u)+B(w—u) for all v (see
Fig. 1).

(a) If s admits a supporting line at u, then

s(u) = igf{ﬂu ~e(B)}=s5"(u). )

(b) If s admits no supporting line at u, then

s(u) # igf{ﬁu —e(B)}=s"(u). (10)

In the former case where s admits a supporting line, we
say that the microcanonical and canonical ensembles are
thermodynamically equivalent at u, since then the microca-
nonical entropy function can be calculated from the point of
view of the canonical ensemble by taking the LF transform
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FIG. 1. Geometric interpretation of supporting lines in relation
to the graph of the microcanonical entropy function s(u) (full line)
and its concave envelope or concave hull s™*(u) (dashed line). The
point a in the figure has the property that s(u) admits a supporting
line at a; i.e., there exists a line passing through (a,s(a)) that lies
above the graph of s(x). In this case, s(a)=s""(a). The point b in the
figure has the property that s(x) admits no supporting line at b. In
this case s(b) #s(b).

of the free-energy function. In the opposite case, namely
when s does not admit a supporting line, we say that the
microcanonical and canonical ensembles are thermodynami-
cally nonequivalent at u [13,16,31]. Note that s™"(u) repre-
sents in general the concave envelope or concave hull of
s(u), which is the smallest concave function satisfying
5" (u) = s(u) for all values of u in the range of & (see Fig. 1).
Hence, s(u)<s"(u) if s(u)#s " (u). Note also that if s is
differentiable at u, then the slope S of its supporting line, if
it has one, has the value B=s'(u) [13].

The nonequivalence of the microcanonical and canonical
ensembles can also be stated alternatively from the point of
view of the canonical ensemble as a definition involving the
free energy. All that is required is to use the fact that the LF
transform of a strictly concave, differentiable function (nega-
tive second derivative everywhere) yields a function that is
also strictly concave and differentiable [30]. This is stated
next without proof (see Refs. [6,13,16]).

Theorem 2. Let ¢(B) denote the free-energy function de-
fined in Eq. (3).

(a) If ¢ is differentiable at B3, then

s(ug) = ¢ (ug) = Bug— @(B). (11)

where ug=¢'(B) represents the equilibrium value of / in the
canonical ensemble with inverse temperature f3.

(b) If ¢ is everywhere differentiable, then s=¢" for all u
in the range of A.

This last result is useful because it relates the nonequiva-
lence of the microcanonical and canonical ensembles to an
observable physical phenomenon, namely the emergence of
first-order phase transitions in the canonical ensemble as sig-
naled by nondifferentiable points of ¢(3). Put simply, but not
quite rigorously, there must be a first-order phase transition
in the canonical ensemble whenever the microcanonical and
canonical ensembles are nonequivalent [2-6,8,15,32]. This
can be seen by noting that the boundary values u; and u,, at
which we have s(u)#s""(u) (Fig. 1) are such that y

=¢'(B.+0) and u,=¢'(B.-0), where ¢'(B8,+0) and ¢'(B,
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FIG. 2. Free-energy function ¢(8) associated with the noncon-
cave entropy function s(u) shown in Fig. 1. The region of noncon-
cavity of s(u) is signaled at the level of ¢(B) by the appearance of
a point B, where ¢(f) is nondifferentiable. B, equals the slope of
the affine part of s™*(u), while the left and right derivatives of ¢ at
B, equal u;, and u,, respectively.

—0) denote the right- and left-side derivatives of ¢ at S,
respectively (Fig. 2). Accordingly, the length Au=u,—u; of
the nonconcavity interval of s(u) corresponds, in the canoni-
cal ensemble, to the latent heat of a first-order phase transi-
tion.

III. GENERALIZED CANONICAL ENSEMBLE

We now introduce a canonical ensemble that, as we will
prove, can be made equivalent with the microcanonical en-
semble in cases when the standard canonical ensemble is not.
The construction of this generalized canonical ensemble fol-
lows simply by replacing the Lebesgue measure dw entering
in the integral of the partition function Z,(8) with the mea-
sure e 8M@)]gq where g(h) is a continuous but otherwise
arbitrary function of the mean Hamiltonian /(). Thus,

Zg,n(a) — j e—nah(m)—ng[h(w)]dw (12)
O’n

represents the partition of our system in the generalized ca-
nonical ensemble with parameter . The corresponding gen-
eralized free energy is

1
¢(a)=1lim - —InZ, (). (13)
n—o n

We use at this point the variable « in lieu of £ in order not to

confuse a with the inverse temperature of the canonical en-
semble.

At the level of probabilities, the change of measure dw

— e8] leads us naturally to consider the probability
density

e neh(@)-nglh(w)]
Pgal@)=—""—""— (14)
¢ Z; (@)

as defining our generalized canonical ensemble. The choice

g=0 yields back obviously the standard canonical ensemble,
that is,

e—nah(w)

Z,(a)

Po=0.o(®) = (15)

and @,_o(@)=¢(B=a).
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Let us now show how the generalized canonical ensemble
can be used to calculate the microcanonical entropy function.
Repeating the steps that led us to express ¢(8) as the LF
transform of s(u), it is straightforward to derive the follow-
ing modified LF transform:

@g(a) = inf{lau + g(u) - s(u)}, (16)

which, by defining s,(u)=s(u)-g(u), can be written in the
form

@ (a) = inf{lau —s,(u)}. (17)

This shows that the generalized free energy ¢ () is the LF
transform of a deformed entropy function s,(u). This func-
tion can be thought of as representing the entropy function of
a generalized microcanonical ensemble having the following
modified density of states:

Pontt) = f S(h(w) — u)e Mg, (18)
‘Q'Vl

which results from the change of measure. Note indeed that
Pg,n(u)=€_"g(”)pn(u), so that

1 1
sy(u) = lim —1In p, ,(u) =— g(u) + lim — In p,(u)
n—oo N n

n—o

=s(u) - g(u). (19)

As was the case for the standard canonical free energy
@(pB), the LF transform that now relates ¢ (a) to the LF
transform of sg(u) can be shown to be valid for any function
s(u) and any choice of g since ¢,(a) is an always concave
function of a. However, as before, the reversal of this trans-
form is subjected to a supporting line condition, which now
takes effect at the level of s5,(u). More precisely, if s, admits
a supporting line at u, in the sense that there exists a such
that

5,(v) < 5,(u) + a(v — u) (20)

for all v, then the transform goz yields the correct entropy
function Sq at u, that is,

$5() = inf{a = g ()} = sg (10); (21)

otherwise s,(u) #s;*(u). At this point, we only have to use
the fact that s(u)=s,(u)+g(u) to obtain the following result.
Theorem 3. Let g(u) be a continuous function of u in
terms of which we define s,(u)=s(u)-g(u).
(a) If 5, admits a supporting line at u, then

s(u) =inflau — g (@)} + g(u). (22)

(b) If 5, does not admit a supporting line at u, then
s(u) # inflau — (@)} + g(u). (23)
This result effectively corrects for the nonequivalence of

the microcanonical and canonical ensembles. It shows that,
in cases in which s does not have a supporting line at u, we
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may be able to find a function g # 0 that locally transforms
s(u) to a deformed entropy s,=s—g that has a supporting line
at u. This induced supporting line property is what enables us
to write s,(u) as the LF transform of the deformed free-
energy function ¢,(a), and, from there, we recover s(u) by
simply adding g(u) to the result of the LF transform of
@,(@), thereby undoing the deformation induced by g. In this
case, we can say, in parallel with what was said in the pre-
vious section, that we have equivalence of the microcanoni-
cal and generalized canonical ensembles at the thermody-
namic level. Obviously, if s, dqgs not possess a supporting
line at u for the chosen g, then s;'(u) # 5,(u), and so the trick
of expressing s(u) through the LF transform of ¢,(a) does
not work. In this latter case, we say that there is thermody-
namic nonequivalence of the microcanonical and general-
ized canonical ensembles.

We close our discussion of thermodynamic nonequiva-
lence of ensembles by stating the generalization of Theorem
2. We omit the proof of this generalization as it follows di-
rectly from well-known properties of LF transforms and a
straightforward generalization of known results about the
equilibrium properties of the canonical ensemble.

Theorem 4. Let ¢,(a) denote the generalized free-energy
function defined in Eq. (13).

(a) If @, is differentiable at «, then

s(ug,a) = (PZ(ug,a) + g(ug,a) =CQUg o~ (pg(a) + g(ug,a)’
(24)

where u, ,=¢,(@) represents the equilibrium value of % in
the generalized canonical ensemble with parameters « and g.

(b) If @, is everywhere differentiable, then s= qoz+g for all
u in the range of A.

The implications of this theorem are illustrated in Fig. 3,
which shows the plots of different entropy and free-energy
functions resulting from different choices for the function g.
This figure depicts three possible scenarios:

(a) The original nonconcave entropy function s(«) and its
associated nondifferentiable free-energy function ¢(B) for
g=0. Recall in this case that the extent of the nonconcave
region of s(u) is equal to the latent heat associated with the
nondifferentiable point of ¢(B); see Fig. 3.

(b) The modified entropy function s,(x) resulting from
this choice of g has a smaller region of nonconcavity than
s(u), which is to say that

Aug=uy),—uy; <Au. (25)
From the point of view of the generalized canonical en-
semble, we have

Au, = gy(a. - 0) — gy, +0), (26)

and so we see that this choice of g brings, in effect, the left
and right derivative of ¢, at @, closer to one another com-
pared to the case in which g=0. In other words, this choice
of g has the effect of “inhibiting” the first-order phase tran-
sition of the canonical ensemble.
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FIG. 3. Schematic illustration
of the effect of g on the entropy
and free-energy functions. (a) Ini-
tial entropy s(u) and its corre-
sponding free energy ¢(B) (see
Figs. 1 and 2). (b) Modified en-

tropy s,(u) having a smaller re-
gion of nonconcavity than s(u),

and its corresponding generalized
free energy ¢ (). (c) A modified
entropy s,(u) rendered fully con-
cave by g; its corresponding gen-
eralized free energy ¢@u(a) is ev-
erywhere differentiable.

B

(c) The function g makes s,(u) strictly concave every-
where. In this case, ¢,(@) is everywhere differentiable,
which means that the first-order phase transition that origi-
nally appeared in the canonical ensemble has been com-
pletely obliterated. As a result, the generalized canonical en-

semble must be equivalent with the microcanonical
ensemble, since the former ensemble does not “skip,” in the
manner of a discontinuous phase transition, over any mean
energy values [31].

IV. MACROSTATE NONEQUIVALENCE OF ENSEMBLES

Just as the thermodynamic properties of systems can gen-
erally be related to their macrostate equilibrium properties, it
is possible to define the equivalence or nonequivalence of the
microcanonical and canonical ensembles at the macrostate
level and relate this level to the thermodynamic level of non-
equivalent ensembles described earlier. This was done re-
cently by Ellis, Haven, and Turkington [13]. A full discus-
sion of the results derived by these authors would fill too
much space; we shall limit ourselves here to present a sum-
mary version of their most important results, and then
present generalizations of these results that are obtained by
replacing the canonical ensemble with the generalized ca-
nonical ensemble [28].

We first recall the basis for defining nonequivalent en-
sembles at the macrostate level. Given a macrostate or order
parameter m, we proceed to calculate the equilibrium, that is,
most probable values of m in the microcanonical and canoni-
cal ensembles as a function of the mean energy u and inverse
temperature 3, respectively. Let us denote the first set of
microcanonical equilibrium values of m parametrized as a
function of u# by £ and the second set of canonical equilib-
rium values parametrized as a function of B by £z By com-
paring these sets, we then define the following. On the one
hand, we say that the microcanonical and canonical en-
sembles are equivalent at the macrostate level whenever, for
a given u, there exists B such that £"=Eg. On the other hand,
we say that the two ensembles are nonequivalent at the mac-
rostate level if for a given u, there is no overlap between &
and all possible sets 5,3, that is, mathematically if €”ﬂ<‘,’ﬁ
= for all B.

These definitions of the macrostate level of equivalent and
nonequivalent ensembles can be found implicitly in the work
of Eyink and Spohn [17]. They are stated explicitly in the
comprehensive study of Ellis, Haven, and Turkington [13],
who have proved that the microcanonical and canonical en-
sembles are equivalent (nonequivalent) at the macrostate
level when they are equivalent (nonequivalent) at the ther-
modynamic level. The main assumption underlying their
work is that the mean Hamiltonian function A(w) can be
expressed as a function of the macrostate variable m in the
thermodynamic limit (n— o). A summary of their main re-
sults is presented next; see Ref. [13] for more complete and
general results.

Theorem 5. We say that s admits a strict supporting line at
u if there exists B such that s(v) <s(u)+B(v—u) for all v
Fu.

(a) If s admits a strict supporting line at u, then £=Eg for
some B e R, which equals s'(u) if s is differentiable at u.

(b) If s admits no supporting line at u, that is, equiva-
lently, if s(u) #s" (u), then £N Eg=¢ for all BeR.

The first case corresponds, as was stated above, to mac-
rostate equivalence of ensembles, whereas the second corre-
sponds to macrostate nonequivalence of ensembles. There is
a third possible relationship that we omit from our analysis
because of too many technicalities involved: it is referred to
as partial equivalence and arises when s possesses a non-
strict supporting line at u, that is, a supporting line that
touches the graph of s(u) at more than one point [13].

Our next result is a generalization of Theorem 5 about
macrostate equivalence and nonequivalence of ensembles. It
shows, in analogy with the thermodynamic level, that the
microcanonical properties of a system can be calculated from
the point of view of the generalized canonical ensemble
when the canonical ensemble cannot be used for that goal.

Theorem 6. Let s,(u)=s(u)—g(u), where g(u) is any con-
tinuous function of the mean energy u, and let £, ., denote the
set of equilibrium values of the macrostate m in the general-
ized canonical ensemble with function g and parameter «.

(a) If s, admits a strict supporting line at u, then &"
=&, , for some a e R, which equals s;,(u) if s, is differen-
tiable at u.
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(b) If 5, does not admit a supporting line at u, that is,
equivalently, if sg(u)is:,*(u), then &'NE, =D for all «
e R.

Proof. For the purpose of proving this result, we define a
generalized microcanonical ensemble by changing the Le-
besgue measure u(w)=dw, which underlies the definition of
the microcanonical ensemble, to the measure

o) = e ey, (27)

As mentioned before, and shown in Eq. (19), the extra factor
e8] modifies the microcanonical entropy s(u) to so(1);
however, and this is a crucial observation, it leaves all the
macrostate equilibrium properties of the microcanonical en-
semble unchanged because the microstates that have the
same mean energy still have equal probabilistic “weight”
under the measure. This implies that the generalized micro-
canonical ensemble is, by construction, always equivalent to
the microcanonical ensemble at the macrostate level. That is
to say, if 5; denotes the set of equilibrium values of the
macrostate m with respect to the generalized microcanonical
ensemble with mean energy u and function g, then Sg:E” for
all v and all g.

Next we observe that the supporting line properties of
s,(u) determine whether the generalized microcanonical and
generalized canonical ensembles are equivalent, just as the
supporting line properties of s(u) determine whether the
standard microcanonical and standard canonical ensembles
are equivalent; to be sure, compare Eqgs. (7) and (17).

With these two observations in hand, we are now ready to
prove equivalence and nonequivalence results between &
and &, ,. Indeed, all we have to do is to use the equivalence
and nonequivalence results of Theorem 5 to first derive
equivalence and nonequivalence results about EZ and &, ,,
and then transform these to equivalence and nonequivalence
results between &" and &, , using the fact that £“=&, for all
u and any choice of g. To prove part (a), for example, we
reason as follows. If s, admits a strict supporting line at u,
then &;=¢&, , for some @ € R. But since &=£&" for all u and
any g, we obtain £“=&, , for the same value of a. Part (b) is
proved similarly. If s, admits no supporting line at u, that is,
if s,(u) # s:*(u), then EZ NE, =@ for all @ e R. Using again
the equality &=£", we thus obtain £'NE, =@ for all @
e R. O

V. GAUSSIAN ENSEMBLE

The choice g(u)=7yu” defines an interesting form of the
generalized canonical ensemble that was introduced more
than a decade ago by Hetherington [27] under the name of
Gaussian ensemble; see also Refs. [33-37]. Many properties
of this ensemble were studied by Challa and Hetherington
[34,35], who showed, among other things, that the Gaussian
ensemble can be thought of as arising when a sample system
is put in contact with a finite heat reservoir. From this point
of view, the Gaussian ensemble can be thought of as a kind
of “bridge ensemble” that interpolates between the microca-
nonical ensemble, whose definition involves no reservoir,
and the canonical ensemble, whose definition involves an
infinite reservoir.

PHYSICAL REVIEW E 73, 026105 (2006)

u

FIG. 4. Example of a point of s(u) which does not admit a
supporting line but admits a supporting parabola. Such a point is
accessible to the Gaussian ensemble but not to the canonical
ensemble.

The results presented in this paper imply a somewhat dif-
ferent interpretation of the Gaussian ensemble. They show
that the Gaussian ensemble can in fact be made equivalent
with the microcanonical ensemble, in the thermodynamic
limit, when the canonical ensemble cannot. A trivial impli-
cation of this is that the Gaussian ensemble can also be made
equivalent with both the microcanonical and canonical en-
sembles if these are already equivalent. The precise formu-
lation of these equivalence results is contained in Theorems
3 and 6, in which s,(u) takes the form s.(u)=s(u)~- yu?.

In the specific case of the Gaussian ensemble, these re-
sults can be rephrased in a more geometric fashion using the
fact that a supporting line condition for s,, at u is equivalent
to a supporting parabola condition for s at u. To see this, we
need to substitute the expression of s.(u) and a=s;(u)
=5'(u)—2vyu in the definition of the supporting line to obtain

s(v) < s(u) + a(v —u) + Y(v —u)? (28)

for all v. We assume at this point that Sy and therefore s, are
differentiable functions at u. The right-hand side of this in-
equality represents the equation of a parabola that touches
the graph of s at u and lies above that graph at all other
points (Fig. 4); hence the term “supporting parabola.” As a
result of this observation, we then have the following: if s
admits a supporting parabola at u (Fig. 4), then

s(u) = @ (u) + yu? =inflau — @ ()} + yu?; (29)

otherwise the above equation is not valid. A macrostate ex-
tension of this result can be formulated in the same way by
transforming the supporting line condition for s,(u) in Theo-
rem 6 by a supporting parabola condition for s(u).

The advantage of using supporting parabola instead of
supporting lines is that many properties of the Gaussian en-
semble can be proved in a simple, geometric way. For ex-
ample, it is clear that since s(u) can possess a supporting
parabola while not possessing a supporting line (Fig. 4), the
Gaussian ensemble does indeed go beyond the standard ca-
nonical ensemble. Moreover, the range of nonconcavity of
sg(u) should shrink as one chooses larger and larger values of
v. From this last observation, it should be expected that a
single (finite) value of vy can in fact be used to achieve
equivalence between the Gaussian and microcanonical en-
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sembles for all value u in the range of &, provided that (i) y
assumes a large enough value, basically greater than the larg-
est second derivative of s(u); (ii) the graph of s(u) contains
no corners, that is, points where the derivative of s(«) jumps
and where s”(u) is undefined; see Ref. [28] for details.

The second point implies physically that the Gaussian en-
semble with y<<o cannot be applied at points of first-order
phase transitions in the microcanonical ensemble. Such
points, however, can be dealt with within the Gaussian en-
semble by letting y— o0, as we shall show in a forthcoming
paper [41]. With the proviso that the limit y— % may have to
be taken, we can then conclude that the Gaussian ensemble is
a universal ensemble: in theory, it can recover any shape of
microcanonical entropy function through Eq. (29), which
means that it can achieve equivalence with the microcanoni-
cal ensemble for any system.

VI. CONCLUSION

In this paper, we have studied a generalization of the ca-
nonical ensemble which can be used to assess the microca-
nonical equilibrium properties of a system when the canoni-
cal ensemble is unavailing in that respect because of the
presence of nonconcave anomalies in the microcanonical en-
tropy function. Starting with the supporting properties of the
microcanonical entropy, which are known to determine the
equivalence and nonequivalence of the microcanonical and
canonical ensembles, we have demonstrated how these prop-
erties can be extended at the level of a modified form of the

PHYSICAL REVIEW E 73, 026105 (2006)

microcanonical entropy to determine whether the microca-
nonical and generalized canonical ensembles are equivalent.
Equivalence-of-ensembles conditions for these two en-
sembles were also given in terms of a generalized form of
the canonical free energy. Finally, we have discussed the case
of the Gaussian ensemble, a statistical-mechanical ensemble
introduced some time ago by Hetherington, which arises here
as a specific instance of our generalized canonical ensemble.
For the Gaussian ensemble, results establishing the
equivalence and nonequivalence with the microcanonical
ensemble were given in terms of supporting parabolas.

In a forthcoming paper, we will present applications of the
generalized canonical ensemble for two simple spin models
which are known to possess a nonconcave microcanonical
entropy function. The first one is the Curie-Weiss-Potts
model studied in Refs. [21,25]; the second is the block spin
model studied in Refs. [38,39]. Other possible choices for
the function g, including absolute-value functions of the
form g(u)=1u|, will also be discussed in connection with
these models [41].
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